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E‘ I.i Problem Definition

3 M\JA. Background

#
Passive surveillance system performance in terms of

area coverage is ultimately limited by the noise environ-
| ment in which it must operate. As the state of the art in
é design has progressed, interest is no longer exclusively
! ‘ in the omni-level of the noise field but now includes as

E equally important the spatial, temporal and directional

| characteristics of this field. Additionally, extreme concern
| with the low frequency portion of the noise spectrum develops
as the need for enhanced classification capability increases.
The predominant component of the low frequency noise field
for most platforms is that of ship noise. Thus, as the

need for increased passive detection and classification
capability increases, one is forced to consider the low
frequency portion of the spectrum. In turn, this implies

the need to quantitatively specify the ambient noise envir-
onment.

Shipping distributions play a dominant role in the
calculation of low frequency ambient noise, since these
distributions affect both the level and the directional
characteristics of this noise field. The geographical
distribution of ships throughout the ocean basin gives
rise to the directionality, both horizontal and vertical.ff )
The variation of transmission loss with range and bearing

serves to accentuate or moderate this directional charac-

ter, and also determines the level of the shipping contri- ]
% bution to ambient noise field at the receiver. Both the /
ambient noise and the transmission loss are a function /
] of the depth of the receiver as substantiated by the

comparison of simulation models and experimental results.

LT T T I TE LT i
O™

wov . A
; MR S e Lt
e maE il DTN NP CT WS TR ks S LR W



;, It is clear that all ships throughout an ocean basin
¢ contribute to the ambient noise field. These individual

g contributions will be more or less significant to the level
and directionality of the ambient noise field depending
upon the transmission loss from the ship to the receiver.
Near ships, i.e., those within 50 miles, may not be more
important than far ships, i.e., 200-500 miles, depending
on properties of the various convergence zones. Calcula- ]
| tions clearly show that both the level and directional ' i
. characteristics of ambient noise are sensitive to the total
‘ shipping distribution, including both near and far ships.
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Historical shipping ficlds are available and serve
as a basis for planning and preliminary calculations in
the determination of real ti-ie shipping distributions.
Experience backed by empirical results demonstrates that
for model validation and ambient noise determination for
particular sites in a particular experiment an accurate
and timely ohservation of the true total shipping distri- ‘
bution must be employed to obtain satisfactory results. £
In the near term this distribution is obtainable only by |

————— — -

-

o

the use of real time aircraft surveillance.

LT

This report addresses the problems and approaches
involved in reducing this observational data obtained from
aircraft surveillance in order to obtain a representative
shipping field for the time frame of the experiment.
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B. Basic Problems

The raw data, of course, is highly dependent upon the
flight tracks and equipment performance. This implies
that if the region of interest is divided into rectangles
of some preset size (e.g., 1° x 1°) then the coverage

afforded to these squares is somewhat uneven. Specifically,
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on a flight day a sguare may have multiple or only partial
coverage, i.e., a plane may cover the square more than once
(by covering it on two legs of the flight), or may only
cover a fraction of the square (if it is not directly under
the flight path). Different flight days will usually
utilize different tracks, resulting in differences in the
area being covered. Various portions of the overall survey
area have much higher priority than others (viz, a line
containing the source and receiver ships in an acoustic
experiment). Also, different planes will often be used.
The equipment on board such planes can vary greatly in
quality and reliability. The planes may even have differ-
ent types of equipment. And different radar operators will
account for mbre differences in data; a good operator can
'tweek' his set with fine adjustments to a high level of
guality; another operator might not be able to do any 'fine
tuning’'.

Thus, the raw data gathered is not completely uniform:;
indeed in some cases qualiiy variations may be extreme.
Also there are historical shipping fields of various quality
which may be utilized. From such an accumulation of data
one wishes to construct, using an algorithm, a representa-
tive shipping field.

C. Techniques

There are innumerable possible ways of answering the
question "How should one estimate density?" In light of
the types of data available, the problems mentioned above,
and the constraints on the analysis (viz, a limited number
of surveillance flights and a rapid response in terms of

the overall shipping field), there are two algorithms which
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appear most suitable. The choice of which of these algo-
rithms to use in analyzing a specific set of data depends
» on the attributes of that data set (e.g., the quality and
h quantity of the data, the conditions under which various
subsets of it were taken). These algorithms are based on
= ' both theory and practice, and have been utilized in the

é | analysis of surveillance data from exercises.

The first one is the weighted average algorithm,
which is described in Section II. If the data is very
limited, this algorithm should be used, which will provide
g@ the (weighted) mean and variance of the shipping density

-

in each square. This algorithm is quite rapid on a pro-

grammable desk top electronic calculator. If more data :
;‘ is available, or the data is of very uneven quality, then |
5‘ the other algorithm should be utilized. This algorithm, ' }
L which can utilize incomplete data, is described in Section ;

bl ki Wt sl 8d

III. The theory underlying this algorithm is presented in
» ( 3
Section IV. ‘

Like any mathematical or statistical tool, it can be

misapplied. If data is uniformly poor or worthless, no

e aamd PECFU R

algorithm will convert it into an accurate prediction
(the ccomputer maxim of GIGO is completely applicable).

If data is very scanty (e.g., one day of observation), there

.o

1 is no point in utilizing such an algorithm; there is little

[
.

cr nothing to cross-correlate. In such a situation the
former algorithm should be utilized.

Typical results of the weighted average algorithm
are given in Section II. An example of the other algorithm

- SRS~ GV R RO * . ]

as applied to actual data is given in Section V.
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} .. The description of the weighted average algorithm

: (Section II ) is taken from PSI revort TR-004002, while
?5 ' the description of the partial data set algorithm comes
9 from TR-004012.
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II. Weighted Average Algorithm

It is necessary to assure that the shipping field density
during the course of the exercise is stationary, i.e., not
time dependent. It is then of interest to consider the average
density. A moments reflection will indicate that the arithmetic
mean

1
A= n d, (1)

1

[l o lite |

has certain deficiencies. For example, suppose on day 1 an

area was covered at three different times by different aircraft,
but on day 2 only one aircraft was in the area, and it only
covered half the square. The above formula would attack equal
significance to the computed values of the ship density on those
two days, whereas the estimate of the density on day 1 is (sta-
tistically) superior to that of day 2. For this reason a
weighted average will be used.

Before plunging into the relevant equations, several quanti-
ties will be defined. Fix an area of the ocean (for the com-
putations 5° x 5° squares will be used), and let n. be the
number of ships observed on the ith day (i = 1,2,...,n), and
let 1 be the proportion of the area covered on the ith day.

If P; # 0 then an estimate of the density of ships in the area
on the ith day is given by

d, = n./p; (2)
For later convenience, define

n
s= I pg (3a)

n
S, = E P (3b)

S e S e g e
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The weighted average has the form
widi
&2 (4)

where wi and k are constants (the constant k is introduced so

that the w; may have simpler form). 1In order to attach the same

importance to each square mile which was covered, the weight must

be proportional to the amount of area covered, i.e., Wi = Py
The constant k is chosen such that 4 is an unbiased estimator.

That is, if di are independent samples of a random variable

(called "density") having mean u, then k is chosen such that the
expected value of d is u, i.e.,

E[d] = v (5)

which implies k = s. But widi

it
T
o1

Il
=]
1]
o)

a= (Xn;)/s ‘ (6)

For similar reasons, a weighted estimator of variance is
desirable. This estimator has the form

A2_-1 ~ _ 2
¢ = i ZZWi(di d) (7)
Letting &i = Py gives a system consistent with equation (6). This

system favors the larger area coverage, but does not place inordi-
nate emphasis on the days with maximum coverage.

Choosing k such
that ¢“ is an unbiased estimator gives

n
~2 S > 2 _J2 _
of =y L /Ry - ds) (8)
s” - s
2
where ni/pi = o when n;, = pi = o. The (weighted) average density,

by 5° x 5° square, is given in Figure 1, and the variance is

given in Figure 2, for data gathered recently in the Pacific.
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III. Algorithm for Estimating the Monthly Shipping Density
Averages from a Partial Data Set

A. Introduction

- The shipping density D(x, y, t) at a given ocean locality
is a stochastic function of time. Conceptually, it is defined

as a number of ships per "unit" area. In practice, the unit
area is‘taken to be a 1/2° x 1/2° square in the ocean, thus
D(x, v, t) for any point in the grid is simply the number of
ships in the grid. Thus instead of a contintous varying point

B TR SOy WP APy SRR RO Y

Loy . camdl

i . (x, y) in the ocean, we have

! D(x, ¥, t) = D(S;, t) (1) %

i s

j {
where (x, ¥) e 8; . f

" - .

| and Si' i=1 2,...,N is a partition

of the given ocean area into 1/2° x 1/2° squares. Our problem -
is to estimate the time averages ]

¥y
;s
4
E
E
]
i
|
%
af\

T
. 1 1
1 oJT
0
In the present problem we take T1 - TO = one month

Now D(Si’ ) ié observed for oniy a few points in time tj'

j=1,...,M. In fact, M < 4. Furthermore the set of S, observed -
at a given time t4 may or may not cover the entire ocean area. We

~haJl assume- that there is at least one time- l’ for example, when

the observation (by radar), covers the entire ocean area. The

observation of the ocean area at a given time tj may be

revresented by an N x M matri< C, i.e.,

—— =

C(i, J) = [C(sy, tj)] i=1, 2,...,8; j=1,...,M (3)

where C(Si' tj) = number of times square Si is cbserved.
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Of course C(i, j) 2 0. And we stipulate that for j = 1,

C(i, j) 2 1. Corresponding to C(i, j), we have the ship matrix
S, i.e.,

S(i, j) = number of ships reported to be in Si

at time tj

Then the Density Matrix D is given by

D(i, j) = s(i, )/ c(i, J) (4)

where only elements of D(i, j) for which C(i, j) # 0 are defined.
Thus D is an incomplete matrix, The problem is then to estimate
the veztor D. ‘

D = (p(1),...D(N)) ffom the matrices C and S.
B. Solution

The following approach is adopted.

Step 1l: Complete the matrix D from the data C and S,
by method of least sguare.
M

step 2: D(i) = (Z w,D(i, 3)1, (1)
j:l .

where """ deriotes "estimation of" and the wj‘s
are welights.

C. Details of Step 1

Recall that the first column of D is complete, and for
simplicity, we assume that all other columns of D are incomplete;
we shall complete the other in:zomplete columns so as to maximize

the-correlation of the j-th cclumn of D

iSj = (D(i, j), 4 =1, 2,...,N) with the first

column, and with each other. 2Aud this is done by means of
weighted least square. More precisely, we maximize the follow-~

ing function p,




M M
> ->
= L k. p(D D.,) + I k.. D,, D. 2
| p =B RyEDy, D)+ B Ky eyl By) (2) |
: .. s

& ' where p(Bi, Bj) is the proportionality factor between Bi and Bj

and k's are some sort of weighting factors. The "non-existent" i
D(i, J) are variables to be estimated by maximizing p, i.e., by

'! | setting

i
:
E
i ap _
» a x -0 (3)
| | |

Sk g .

One equation for each missing D(i, j) (= x) and kj are some
! weighting factors. However to simplify the calculation, we

ig tentatively set kij = 0.* Then p is maximized by separately
;} maximizing 3
! ' > > {
P! . = D D.

| Py p(D;, J) (4)

i.e., by setting

—x =0 (5)

o can i Bl

one equation for each missing D(i, j) (= x) in Bj

We further specify the form of pj so that for a given miss-l

ing D(i, j) (= x), equatinn

SN

' to the missing element in the j-’r:}l column
X = D(ll j)-
>

*"rom the fact that many elements of Bi’ D. are missing, we ex-
pect kij << ki’ kj. Hence as a first appr8ximation, kij = 0.

3p. ' , :
-5;} = 0 is of the following form i
a . ;*
= [ C(i, 1) C(i, §) (D(i, 1) x-D(i, ) *x)) ] (6) i
ieE. '
_ e, |
5 where E. = the set of 1 ¢[1,2,...,N] for which D(i, j) exist i
and X, = D(i, 1), the element in the first column corresponding to ;
i
i
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The complete form of pj is

2\.
p. = L z c(i, 1) C(i, 3j) D(i,1l) x -D(i, 3J) xl) (7)
) XY 2 iEZEj
From (6) we deduce immediately¥
2
z C(i, 1) C(i, J) D(i, 3)
ieE.
x o — s (8
Xy I c(i, 1) c(i, 3j) D«i, 1) D(i, 3J) j
ieEj

Thus we see that a._i is the same for all x = D(i, j) in B..

Thus we have simply

D(i, j) = 3, D(i, 1) (9)

for all i ¢ E.. Thus the missing D(i, j) can be estimated for
each j = 2,...,M and the monthly average computed by

M .
D(i) = (¢ D(i, J))/M (10)

j=1
*This is the benefit of assuming k.. = 0, otherwise we have to

. L .
solve a simultaneous system of linddr equations or use an
iterative method.
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D. General Algorithm

Section C treated the special case where it was assumed
that the first column of the D matrix (which corresponded to
flight day ‘'one') was complete, and that all other columns were
incomplete. That is, it was assumed that one of the fligh: days
obtained total coverage of the area and all other days only had
partial coverage. This is the simplest case, and was used to
illustrate the technique involwved. In practice, of course, the
situation is much more complex. The number of complete area
coverage days may be much greater than one, or it may be zaro.

Also, the simplified case presented above assumed that all
days had equal weighting; this is rarely the case, for reasons
mentioned in section I-B. Thus appropriate weights must be
computed. As was done in section II, weights are determined by
the number of times each flight covered the specific squares
which it was surveying.

!
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Theory of Estimating Ship Density Time Averages for

Incomplete Data

A. Introduction

The previous section presented an algorithm for estimating
ship density time averages from incomplete data. It was a
weighted least 3square method, minimizing a certain weighted sum
of squares. It turns out that the computation of that algorithm
is quite simple. 1In this paper we tackle the same problem from
a theoretical point of view. This naturally leads to a maximal
likelihood estimate for the density. It is shown that the maxi-
mal likelihood estimate will tend to make each component of the
cited sum of squares small, thus vindicating our algorithm.

The exact numerical solution of the maxinial likelihood esti-
mate is much more complicated than the algorithm of Section III.
The algorithmic solation is utilized as an approximation to the
maximal likelihood estimate.

The notation of this section is consistent with that used
in the description of the algorithm. In particular the meaning
of C, D, 5, 3j’ 8, Si' M, N,... are the same.

B. Theory, Assumptions and Notatian
N

Recall that k.} Si is a partition of the ocean area of
i=1

interest. Observations are made at times t., j=1,...,N. The

ship matrix S looks schem.tically as follows
S s -—— 8

1 2 N
., n o : . I R
tl ; ' : // ’.
t2 L /) //’
~— ) Fig. 3 Schematic
E; View of S
tM

|
|
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We shall assume that for each square Si' there is a proba-
bility p(Si) = Py such that given a ship in the area, it will
be found to be in the square Si' We assume that P is constant
in the period from ty to ty (i.e., we assume that the relative
densities throughout the area do not change in the time period
under consideration.) By looking at the generating function

K
g(xl,...,xN K) = (plxl +...+ pan) (1)

where
N .
Le; =1 (2)

It is seen that the probability of there being ki ships in

si' i=l'-oo,N iS

P_(k

N k
. ,...,kN) = C(K;lc,...,kN)g:E(Pi) i : (3)

1 1

where

and C is the multinomial coefficient.

Let there be a total of K ships in the area and assume that
only a subset E of the squares in area S have been observed that
day (either full or partial coverage of the square). For con-

venience let the subset E of
S = {sl, sz,...,sN}

be given by

=
Il

{Si:i e Q}

where Q is a subset of {1,2,...,N}.

Define

Pg =j-[: Py

ieQ

i
3
3
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Then the probability that there are ki ships in square S for all

squares Si in the subset E (gives a tctsl of K ships) is

Pr [D(S;) = k; v i€Q|K]

K K (K
K E c
= (K )(pE) (p.)

E c JC .

k.

1eQ

K k.
_ K! C 1
- KC! : ki! (Pc) ]—[ (Pi) .

ieQ ieQ

(4)

Denote this function by Pr(QIK), which is a much simpler, though

nonrigorous (and somewhat sloppy) notation.

C. Maximal Likelihood Estimates

Th=z Likelihood function L for the M time observations in

the overall area S is given by

M
L(S) = logJ L Pr(Q.|K.)
j=1 i3

where Qj is the subset of indicies corresponding to the square

(1)

observed on the j-th day, and Kj is the total number of ships in

area S on the j-th day.

That is, if Ej denotes the subset of squares Si of the set

S which were covered on the j-th day of observation, then

|
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E. = {S,: ieQ.}.

;= (85 ieQ)
Th<¢ unknowns in equation (1) are the total number of ships

in the area for each day of cover:ige (note this is not equal

o the number of ships observed on those days), and the base

probabilities for each square.

These unknowns are determined as those values which maxi-
mize L(S), i.e., the solution of the following system

3 ., _ N _
g lL(s) + il -‘E p;)] =0 b
i=1
ior jEJ
(2)
3 N
——[L(8) + (1l - Z p.)] =0
APy i=1 )
for 1<i<N

where, of course, we have the constraining relationship

The set J consists of indicies of all days which did not cover

(full or partially) every square, i.e.
J = {j:1<j<M and Ej # S}.

Cr, more explicitly, the system of equations is:

a "~ ~
=w—[log K.! - log k.! + k., lo l-qg. =0
SR [109 g Ky 5 log (l-q))]

J
for jedJd

1
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;g N
5Lz £ D(i,j) log p;l
i 11 jet 1

3 ”
+ —[ & k. logg., + I k. logy (1-gq.)]

9P yeg I I jeq ) ’

3 L =

+.Z 35, [.2 D(i,j)log pi] -x2=0 (3)

for l<isN

where we define (using notation from section III)

N

K. £ D(j) =t ©D(i,])

J i=1
K. =D_.@G)=Z D" ,.)

J E ieQ.

J
=K, =-

AL TR B

$ = {j:ls.jS.M} - J
g. = L p.

J ier +

Fal

That is, Kj is the partial sum of ships, Kj its difference from
the total sum Kj’ ¢ is the complement of J and qj is the partial
sum of probabilities. The quantity X is the Lagrangian multi-

plier arising from the restraining equation.

Without loss of generality we may assume that the set J has
exactly one element, and this element will be taken to be '1'.
For it is assumed that on some day all squares will be covered
(fully or partially); if this is not so, historical data can be
utilized to establish a 'base' field, or first overall estimate.

(Incorporation of historical data bases with observational data
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|
in these algorithms can be easily accomplished. However under ﬁ
S o such conditions weights should definitely be used to reflect the K
: ]

4 relative confidence in the differing data types - see section I).
If J consists of more than one element, then those days may be

| comtined (using appropriate weighting, as is done in section II),
’ into a single 'day' of data, which is then utilized. 1In practice,

L of course, the algorithm given in section III performs properly
|

regardless of the size of this artificial set 'J'. Therefore,

there is no loss of generality in assuming that the set J con-
sists of the single index 'l', which is implicitly used in the
following subsections.

We shall solve the problem first for the case M = 2, then
for the case M = 3. These two specific cases will suffice for

T L e TR T A T AT

ey

1 illustrative purposes; in practice the least squares algorithm
' is always used, which simplifies computation immensely.

D. The Case M = 2

i
To simplify notation we write q, ¥, K and E for s Kyr K, ﬁ
and E2 respectively. The requirement is toc solve the ﬁ
following simultaneous system: {
*1
2 [log Ki-log(K-k)! + (K-k) log(l-q)] = 0
v
7|
. K K-k D(i,2) . q
—_— - + =
D(i, l)/Pi + [q 1-gq P, 1 ¢E(1) A
for 1<i=<N I
N
: p; =1 (4)
i=]

where ¢ is the characteristic function of the set E, i.e.

b (1) 1 if i€E
B ~ o 1f idE

The first equation will be replaced by an approximation by using

the Stirling approximation for K!
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K! = /21K KX expEK + w(K)) , (5)
where N 1 -
m < (.I.)(K) < 12K . é
Hence 1
3 10 K! o1 k(2K-x) 1 K s
K %9 ®=a)T " 12 ,__.2 .2~ Z K(K-x) 1
(K-k) ™ K i
+ log R§E ﬁ
Thus K is a root of the system: .!
1 k(2K-k) 1 K K ; ]
= 5y = 5= s + log Zz— + log(l-q) = 0 o
12 Kz(K—K)Z 2 K(K-k) K-k B
|

. K, _ (K-x D(i,2) - ‘ ;
D(i,1) + [(q) (l_q) + —piL—]pi Ap; ]

for ieQ (6) 4

The system (6) can be solved iteratively as follows.
Adding the last equations in the system for i=1l,...,N we get

D(1) + Dy(2) +k - 1o * q = A (7

As an initial approximation to ¢, we take

1
(@ = Dg(1)/D(1) (8)

Substituting this value of g into the fir?t equation of (6) we
solve for K and denote the estimat? by (K). Substituting this

value of K into eq. (7), we get (A), hence we get




! iteration will converge,

|
|
|

>

>
1l

Of course,

E
I
‘{i,

g 1
;i and .
: (p.]}
": o
:V' where 1
i
. Then 2
i (q)
i

And the iteration continues.

as with most
solve maximum likelihood estimation problems, it is possible for
the data to be such that the estimates either diverge, oscillate,

or converge to a false position which is not the maximum.

(which is the general case).
function is continuous on a compact subset of Euclidean space,

= D(i,l)/(A; for 140Q
1 1
= [D(i,1l) + D(i,2)1/((A) —-(F} )
1 -
1
= - LKLJHEI - (q)
1 - (q)

1
=1 (py)
ieQ 1

Under suitable conditions the

giving the final estimates of

Lim (g

n-—ow
Lim ( A
n-+rw
n

Lim (p.)
n+e T

iterative procedures designed to

therefore a maximum exists.

E. ‘he Relation of Maximal Likelihood Estimates to the

Least Square Method

Recall that the least square estimates D(i,2), i¢Q

9)

(10)

Since we are only interested in the theoretical properties
. of the problem, and do not intend to use this procedure for
o actual computation in a production environment, it is of no value
to digress into techniques of numerical analysis to handle such
caseds, or to examine the behavior of the system when the maximum
lies on the boundary of the domain, rather than the interior case
It suffices to say that the M.L.E.

A
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are obtained by minimizing each of the following expressions

= I c(i,1)-c(i,2)[D(2,1)D(i,2) - D(L,2)D(i,1)]2

P
L ieQ

for 24Q (1)

where the C's and D's are elements of the matrices used in

section IIT.

To digress a minute, consider the random variable
K
Z= L &, @)

j=1
where the £'s are independent Bernoulli random variables with
parameter (expectation) Py and X is an integer valued random
variable. Then this is a ztochastic representation of the number
of ships in the fL-th square when the variable K denotey the
total number of ships in the area. Now the minimizing value of
D(%,2) for E¢Q (see equation 1 above) is the estimator of the

expected value of Z, which is

E[Z] = plE[K} 3)

[In the situation where there is partial coverage of
squares (or multiple coverage of part of a square by different

flights), then the above heuristic model must be expanded, since
now the estimator K need not be an integer. In such a case the

modification is

where k is the integral rortion of K and n is a discrete random
variable related to the fractional portion of the random vari-
able K. The expected value relation (3) still holds however.]
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Now the maximal likelihood estimates of K and the pz's

are such as to make sz approximate D(%,2)
and D(l)pl aprgvoximate D(%,1), i.e.,

D(i,2) = Kpi

for ieQ
D(i,1) = D(l)pl
D(%,1) = D(1)p, for g0

Thus system (4) will make the term
[D(%,1)D(i,2) - D(2,2)D(,1)]2

small for all ieQ and Qéo, and hence it will make p small.

This shows that the least square estimates of D(%,2), 2¢Q
must approximate the maximal likelihood estimates. However the
numerical calculation of D(%2,2) by weighted least squares is
much shorter than that of maximal likelihood estimates.

F. The Case N = 3

We shall illustrate the calculation of maximal likelihood
estimates for KZ""’KM’pl""pN for the case M = 3. The calcula-
tions are much more complicated than thecase M = 2. Thus we

appreciate even more the quick method of least squares.

Corresponding to eq. (4) of subsection D, we have

K. (2K,-k. K.
3 (2K 4)

K.

- J — - =

K. (K. =k ' 109 g=, * log(l-qy) =0
s B IR 37

12K% (K. -x.) 2
3057

j= 2,3 (1)
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ror i ¢ 9, \J Qy, we have

D(i,1) = Ap;

For i€ Q2 - Q3, we have

. . Ky K=K,
+ — e ——— =
D(i,1) D(i,2) + [q2 I-q, 1 p; = Ap; (2)
For i € Q3 - Q2' we have
K K, - «
. . 3 _ 73 3 _
D(i,1) + D(i,3) + [q3 —T—:—a;] Py = AD; (3)
For i e Q2 (1 Q3, we have
D(i,1) + D(i,2) + D{i,3) + [F2 + F3] p; = Api (4)
K K, = K
2 2 2
where P, = o— = oo ——
2 q, 1 q2

and a similar expression for Fj.

If we add equations (1) for i=1l,...,N, we get

(2) + D
2

A =D(1) + D (3) + (Fz)q2 + (Fj)q3

E 3

B
We initialize 9yr 93 by setting

(qj)l = DE.(l)/D(l)
J
Then from equation (1) we solve for K2, K3 to get (K2)l and (K3)l'

Then equations (2), (3), (4) will get us (pi)l from which (qj)2

are computed and the process repeated until sufficient accuracy

is achieved.
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V. BAnalysis of a Specific Case

:
o
2 A
Lt

This partial data set algorithm was utilized in the
analysis of data obtained in the Alboran basin. The flight
tracks varied widely, resulting in partial coverage for
almost all flight days; in some instances, less than a

>

i e | i o

quarter of the squares were covered (although this was
very unusual).
| There were three types of flights that gathered data

- on the Alboran during the exercise:

i' (a) Aircraft Surveillance flights performed
f during August.

‘ (b) Aircraft Surveillance flights performed
g during November. 1
! (c) Other flights which performed shipping '
i surveillance. These flights had

as their primary tasks other duties
which allowed shipping data to be
gathered at the same time. These
covered a period of several months.

There were a few flights in groups (a) and (b) and several
# in group (c). Quality of the data varied widely; most
r, ;f flights in groups (a) and (b) obtained excellent data,
: & while several flights in group (c) had radar difficulties.
' The time period of interest was November; thus, August

ot ..A‘J sttt el T . il .

shipping densities were scaled to reflect the lighter

i o

traffic in that region during November. Also they were
weighted much lighter than the November flights. The
representative density obtained for November is shown in
figure 3. The confidence in the results depends upon the
underlying data. 1In the Alboran Sea itself, much data

was available and the results are felt to be very trust-

STt e il oI sl

worthy. In the extreme eastern region of the area (squares
12~14, 22-24, 33-35, 46-47) little data was available
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(only two flights gathered data on these squares); thus,

historical data for these squares was entered as well as ’ i
the observed data. Confidence for these end squares

naturally is much lower than for the important areas. |

3 A fishing fleet was observed on one flight of group u

(c), which naturally produced a very high density for that
square on one day. Since the algorithm maximized overall
correlation, the resultant shipping field did not show

PRSP NI P

l this abnormality in the square.

It is interesting to note that densities were com-
[ puted both with and without the final data set (taken 2

X December), and they agreed within 3%, indicating that the
additional data was (statistically) very similar to the

; other data sets.

b b ket Tl

This algorithm has provided realistic shipping den-
S sity estimates based on actual exercise data of vastly

varying quality. It has shown relative insensitivity to !
singularly high data points which are inconsistent with |
the remainder of the data. Therefore, we feel that this 5
algorithm will give an accurate and robust estimate of
the shipping field under typical conditions encountered éi

in actual exercises.
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VI. Theoretical Sensitivity Analysis

In this section we consider the sensitivity of the weighted
average algorithm. To do this a theoretical stochastic model
will be utilized, and the statistics of the estimator (i.e., the
computed density) will be examined.

If an area of open ocean is small (in comparison to the
world), then the number of ships in that area at a fixed time
can be modelled by a Poisson distribution whose parameter A is
the expected number of ships in the area. As before, this small
area is taken to be a square of suitable dimensions. The air-
craft surveillance days are sufficiently separated that a ship
in the square on one day will have left the square by the next
surveillance day, thus we may assume that the ship counts on

different days are independent (the basic premise of statisticul
sampling) .

Therefore considzr a square which contains (on the average)
A ships, and let these be n surveillance flights. Let Py be the
coverage of the i-th flight. Let Xi be a sequence of independent
random variables having Poisson distributions with parameters
Api respectively. Then the weighted average (section II, equation
6) is represented by the random variable

D

LYy /s (1)

where s = Ip,

If z is a random variable having a Poisson distribution
with parameter As, then D is a law equivalent to 2/s, i.e., they
have the same distribution

D 2 2/s (2)

Since we are only interested in the distribution, the cumbersome

term 'law equivalent' will be replaced by the common 'equals'.
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The random variable 2 is Poisson, hence

E (D)

A (3)
A/s

var (D)

so that as s tends to infinity, D tends to the constant A almosi
surely,

Lim D = A (4)

S0

Consider the random variable

Y=+vs (D~ 1)
where characteristic function is

ivYt) it/vVs

¢Y(t) Z E(e =exp{is (e -1)-Aitvs}

Now

Lim ¢Y(t) = exp -~ At2/2

S~rx
uniformly (in t} on compact sets, hence the random variable Y
converges In law Lo a normally distributed random variable with
mean 0 and variance .

Therefore for large values of s, the distribution of D may
be approximated by a normal distribution with mean A and vari-
ance A/s (compare with equation 3).

To evaluate the algorithm, a natural question to ask is:
Given that the density is A, where do the .025 and .975 points
on the distribution of D lie? fThat is, find the largest dL and

the smallest dU such that

Pr(D < dL) < .025

Pr(D > dU) > .975

,,,,,,,




Then we have

Pr(p e [a,, d 1) > .95 3

LI
] i.e., 95% of the time the algorithm would give a value in this
b interval For large values of S we may use the normal approxima- .

: tion to obtain the value

il

A - 1.96VX/S

- d, |

d A = 1.96VX/s

3]

L]

G D

, For small valves of s these limits should be computed directly

‘ from the Poisson distribution. If we only considar the relative

! bounds (i.e., by dividing by the mean), then we can express the !

g? equations in terms of the single parameter B where j
|

B Y

B = As

viz.,

1 - 1.96//8

it

o
\

(6) ,
§y = dy/A = 1 + 1.96// 8 [

Figure 4 graphs these two normally approximated bounds, as well
as giving the actual bounds from the Poisson distributed variable
Z. Note that the Poisson (relative) bound, being an integral
multiple of 1/8, does not converge monotonically as the normal i

bound does, but is discontinuous.

Now consider a problem which is quite different yet often

confused with the previous one. Specifically, given an estimate
; of the density in a square (with a fixed coverage s), construct
3 a confidence interval for the actual density A. That is, we

¥ wish to find the greatest lower bound AL such that if this (ox
any smaller value) is theAtrue density, then tiie probability that

the estimated density is X or greater is less than a prespecified

amount (e.g., .025). A similar statement holds for an upper
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bouna AU' This can be expressed as the largest XL and the smallest

AU such that

|
?
,

>

Pr(D > 2 | A £ A;) £ .025

L
(7)

>

Pr(D < A | A > A, < .025

U

Note that AL and AU are functions of both A and s. Following the
previous analysis we introduce new parameters, viz.,

R T T T T I e -l

B, = A.S

ﬁ L L
i
5 By = AyS
= AS (8)

“1 B
: Once again it turns out that there is only one essential parameter,
for BL and BU may be expressed solely in terms of B. If we recell
the curves of Figure 4, where the abscissa was the parameter B,
then the values of BL and BU (for a given B) may be conceived

graphically as the intersections with a rectangular hyperbola of
parameter B, as illustrated in Figure 5.

Figure 5

~

Geometrical Relationship of BL and BU upon B

e
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Analytically, of course, BL is the solution of the equation

B/8, = 6,(B.), B € (0, =)
and BU satisfies the equation

Solving these equations in the asymptotic case (i.e., using the
normal distribution rather than the Poisson) yields

B, = {/g + .9609 - .98}2
By = {v3 ¥ .9604 + .98)° (9)

where, of course, all square roots are positive. Graphs of these
functions are presented in Figure 6. Note that BL and BU are
the two sections of the parabola

(B - B)2 = 3.84168

From these graphs one may immediately obtain a confidence interval
for the true density A using the equations of system (8).
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